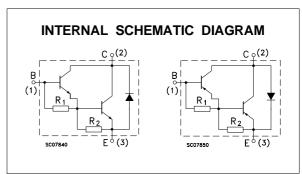
SGSD100 SGSD200

COMPLEMENTARY SILICON POWER DARLINGTON TRANSISTORS

- STMicroelectronics PREFERRED SALESTYPES
- COMPLEMENTARY PNP NPN DEVICES
- MONOLITHIC DARLINGTON CONFIGURATION

APPLICATIONS:

- AUDIO POWER AMPLIFIER
- DC-AC CONVERTER
- EASY DRIVER FOR LOW VOLTAGE DC MOTOR
- GENERAL PURPOSE SWITCHING APPLICATIONS


DESCRIPTION

The SGSD100 is Silicon Epitaxial-Base NPN power transistor in Monolithic Darlington configuration mounted in TO-218 plastic package.

It is inteded for use in general purpose and high current amplifier applications.

The complementary PNP type is the SGSD200.

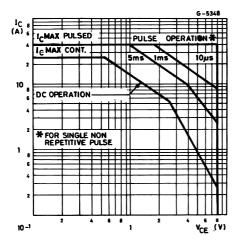
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
		NPN	SGSD100	
		PNP	SGSD200	
V _{CBO}	Collector-Base Voltage (I _E = 0)		80	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)		80	V
Ic	Collector Current		25	Α
I _{CM}	Collector Peak Current		40	Α
I _B	Base Current		6	Α
I _{BM}	Base Peak Current		10	Α
Ptot	Total Dissipation at T _c ≤ 25 °C		130	W
T _{stg}	Storage Temperature		-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C	

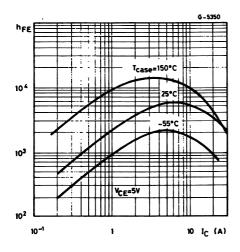
For PNP types voltage and current values are negative.

October 2003 1/6

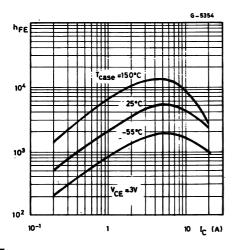
SGSD100/SGSD200

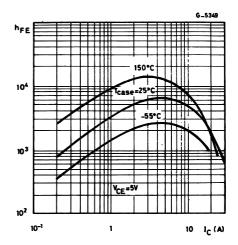

THERMAL DATA

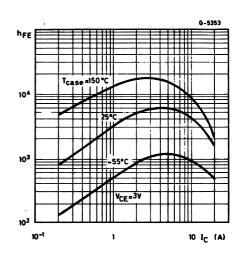
ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

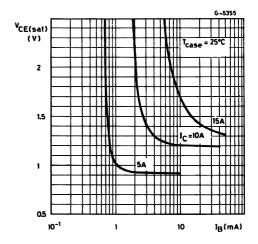

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector Cut-off Current (I _E = 0)	V _{CE} = 80 V V _{CE} = 80 V T _c = 100 °C			0.5 1.5	mA mA
I _{CEV}	Collector Cut-off Current (V _{BE} = -0.3V)	V _{CE} = 80 V V _{CE} = 80 V T _c = 100 °C			0.1	mA mA
I _{CEO}	Collector Cut-off Current (I _B = 0)	V _{CE} = 60 V V _{CE} = 60 V T _c = 100 °C			0.5 1.5	mA mA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 5 V			2	mA
$V_{CEO(sus)^*}$	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 50 mA	80			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$\begin{array}{llllllllllllllllllllllllllllllllllll$		0.95 0.8 1.2 1.3 2 2.3	1.2 1.75 3.5	>
V _{BE(sat)} *	Base-Emitter Saturation Voltage	$I_{C} = 20 \text{ A}$ $I_{B} = 80 \text{ mA}$ $I_{C} = 20 \text{ A}$ $I_{B} = 80 \text{ mA}$ $T_{c} = 100 ^{\circ}\text{C}$		2.6 2.5	3.3	V V
V_{BE^*}	Base-Emitter Voltage	I _C = 10 A V _{CE} = 3 V I _C = 10 A V _{CE} = 3 V T _c = 100 °C	1	1.8 1.6	3	V V
h _{FE} *	DC Current Gain	$\begin{array}{llllllllllllllllllllllllllllllllllll$	600500300	5000 8000 4000 8000 2000 2000	15000 12000 6000	
V _F *	Diode Forward Voltage	$\begin{split} I_F &= 5 \text{ A} \\ I_F &= 5 \text{ A} \\ I_F &= 10 \text{ A} \\ I_F &= 10 \text{ A} \\ I_F &= 10 \text{ A} \\ T_c &= 100 ^{\circ}\text{C} \\ I_F &= 20 \text{ A} \\ I_F &= 20 \text{ A} \\ T_c &= 100 ^{\circ}\text{C} \end{split}$		1.2 0.85 1.6 1.4 2.3 1.3		> > > > > > > > > > > > > > > > > > >
E _{s/b}	Second Breakdown Energy	$V_{CC} = 30 \text{ V}$ L = 3 mH $V_{CC} = 30 \text{ V}$ L = 3 mH $T_{c} = 100 ^{\circ}\text{C}$	250 250			mJ mJ
I _{s/b}	Second Breakdown Current	V _{CE} = 25 V t = 500 ms	6			Α

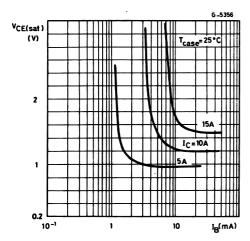
^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 % For PNP type voltage and current values are negative.


Safe Operating Areas

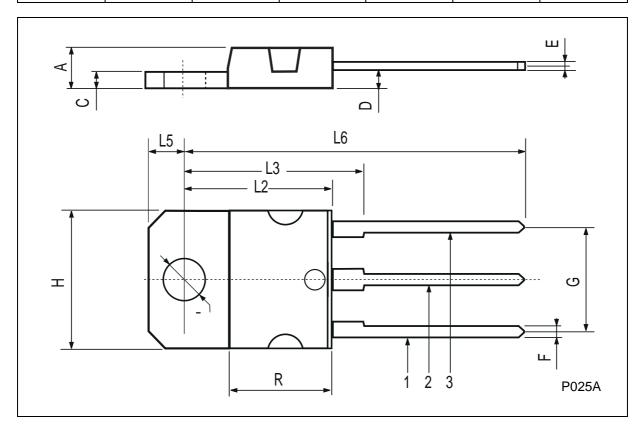

DC Current Gain (PNP type)


DC Current Gain (PNP type)


DC Current Gain (NPN type)


DC Current Gain (NPN type)

Collector-Emitter Saturation Voltage (NPN type)



Collector-Emitter Saturation Voltage (PNP type)

TO-218 (SOT-93) MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.7		4.9	0.185		0.193	
С	1.17		1.37	0.046		0.054	
D		2.5			0.098		
Е	0.5		0.78	0.019		0.030	
F	1.1		1.3	0.043		0.051	
G	10.8		11.1	0.425		0.437	
Н	14.7		15.2	0.578		0.598	
L2	_		16.2	_		0.637	
L3		18			0.708		
L5	3.95		4.15	0.155		0.163	
L6		31			1.220		
R	_		12.2	_		0.480	
Ø	4		4.1	0.157		0.161	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics.

All other names are the property of their respective owners.

© 2003 STMicroelectronics - All Rights reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

4